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The use of a model, based on an expression for the total entropy in the form of a functional with the temperature and density 
gradients of the components, is proposed to describe a mulficomponent, multiphase system using continuous hydrodynamics 
(that is, within the framework of the approach of the continuum mechanics without discontinuities in the hydrodynamic quantifies). 
It is proved that this model is consistent with the zeroth law of thermodynamics. Expressions for the stress tensor, the diffusion 
fluxes and the heat flux are found from the condition that the entropy production is non-negative. Compared with the classical 
Newton, Fick and Fourier laws, these expressions contain third-order spatial derivatives, The problem of a mixture between two 
parallel and impermeable walls at different temperatures is analysed. In this case, the system of dynamic equations reduces to 
a system of ordinary differential equations. It is shown that the number of free parameters, on which the solution depends, 
corresponds to the number of boundary and general integral conditions. © 1998 Elsevier Science Ltd. All rights reserved. 

A hydrodynamic model has been proposed [1] which enables viscous flows and phase transitions in a 
multicomponent mixture to be jointly described without introducing discontinuities at the phase bound- 
aries. An expression for the free energy in the form of a functional, which depends on the gradients of 
the molar densities of the components of the mixture, was the basis of the theory; static states of the 
mixture correspond to the critical points of this functional. 

This approach is analogous to the Ginzburg-Landau method which is conventionally used in the theory 
of phase transitions of the second kind [2-5] (critical phenomena, superfluidity and superconductivity), 
and also to the density functional method in electronics and nuclear physics [6, 7]. This density functional 
method differs from the Ginzburg-Landau method in that the concept of an order parameter is not 
required. On the other hand, up to now the use of a density functional [6, 7] has been confined to the 
physics of single component Fermi systems. 

It has been shown [1] that the use of a density functional in the case of multicomponent gas-liquid 
systems reproduces a number of classical surface and capillary effects. Unlike the traditional theory of 
surface forces [8], the concept of a disjoining pressure is not invoked in the construction of the hydro° 
dynamics, but they are constructed using the conventional stress tensor, for which an explicit expression 
can be found. 

An investigation carded out earlier [1] was restricted to the framework of isothermal processes. Below, 
the density functional method is extended to the case of non-trivial temperature fields. 

1. E Q U I L I B R I U M  S T A T E S  

Suppose a multicomponent mixture (gas or liquid) occupies a spatial domain D with a piecewise- 
smooth, impermeable boundary 3D. The whole or a part of the boundary OD may correspond to the 
contact of the mixture with the solid phase. We shall assume that (a) the Latin indices i , j ,  k, I run from 
1 . . . . .  N, where N is the number of components; (b) the Latin indices a, b, c have values of 1, 2, 3, 
which correspond to certain Cartesian coordinatesxL Summation is carried out over repeated indices. 
Suppose T is the absolute temperature, n i is the molar density of the ith component and m i is the molar 
mass of the ith component. If V = V(T, t / i )  , W = W(x a) are certain smooth functions, we shall use the 
notation Vr  = 3V/OT, V~ = 3V/Oni, Oa W = OW/Ox a. 

In the case of states with a fixed temperature, the free energy of the mixture is given by the functional 
[1] 
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i f / 

F =  Jl'-v~a,,n,a,,n, + slav + J (1.1) 
D ~.2 J ] aO 

where viy = vii( T, nk) is a positive definite symmetric matrix, f = f(T,  ni) is the free energy per unit volume, 
calculated for homogeneous states, co is the surface interaction energy (which can be equal to zero), 
d V  is a volume element and dA is an element of the surface 0D. 

The static states of the mixture are the critical points of the functional (1.1) and the thermodynamically 
stable equilibrium states are the absolute minimum points. Here,  the functional (1.1) has to be varied 
in the class of states with a specified number of particles of the components 

N i = ~ nidV (1.2) 
D 

In the case of  states with a temperature distribution T = T(xa ) ,  rather than constructing a theory on 
the basis of the free energy (1.1), it is natural to construct this theory on the basis of  the entropy of the 
state of the mixture, for which we have the following expression 

s Iagav+ Js, o s-lo o79.T 1 = = -- o~i~aT'Oan i - ~oLi jaaniaan  j 
O ao 2 

(1.3) 

where s = s(T, n) is the entropy per unit volume, calculated in the class of homogeneous states, 
o~ = o~(T, ni) > 0, ~j  = ~j(T,  nk) is a positive definite symmetric matrix and s. = s,(T,  ni) is the 
surface entropy, which may be equal to zero on certain parts of the boundary OD. It is assumed that 
the matrix ( ~ . -  oq%~ -1) is positive definite 

[ J  . . . • . . . .  ° 

We assume that eqmhbrmm states of the mixture correspond to the crmcal points of the functmnal 
(1.3) while the thermodynamically stable states correspond to the absolute minimum points. In this case, 
the states have to be varied for a fixed number of particles of the components (1.2) and, also, for a 
fixed internal energy of the mixture 

U = I ( u + p q ) ) d V +  Ju,dA (1.4) 
D aD 

Here,  u = u(T,  ni) is the energy per unit volume, calculated in the class of homogeneous states, 
u. = u. (T,  ni) is the surface energy, (p = 9(x a) is the gravitational potential and p = mini is the mass 
density. 

Remark 1. The expression for the internal energy functional (1.4) does not contain the gradients of the temperature 
and the particle densities although, at first glance, it would follow that an expression similar to (1.3) should be 
used. Formula (1.4) is a consequence of the assumption that the particle density and n i the internal energy density 
u serve as the primary defining characteristics, while the temperature T is a secondary characteristic which is 
determined from the equation u = u(T, ni). Expression (1.4) is therefore associated with the determination of the 
local temperature. If it is assumed that n i and O are the primary characteristics and that the temperature is 
determined from the equation ~ = s(T', ni), then the gradients in the expression for the total entropy S 
disappear and appear in the expression for the total internal energy U. Here, the temperatures T and T', generally 
speaking, are connected by a differential relation and are only identical in the case of homogeneous states. The 
non-uniqueness in the determination of the local temperature in a theory with spatial derivatives means that a 
certain third effective temperature Te, which differs from T and T' (see below), arises in the entropy production 
equation. 

We will now calculate the variation of the functional (1.3) 

5S = .[ (tboST + ¢YPi~ni -t- I (t~o*~)T d- ~Pi ,~ni)dA 
D ~D 

1 
~Po = S,r + -~ tX,T~ aT~ aT + tX,i~ aT~ ani d" o~AT + 

1 
~" o[i, j a  a?l j a  an i - ~O~ij,Ta anla an j + a i l ~  i 

1 
f~i = S,i -- -~tX,iOaT'Oa T - ~ j , i ~ a T ~ a n j  q" 

(1.5) 
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1 
+ OLi, T~ a TOaT + OLi.j~ani3 a T - -~ Otjk,iOanj3~n k + 

+ cxO. r ~  T3~n i + cx~j,k3on~Oonj + a;jAnj 

~o .  = la (°u3a T + cZiOan i) + s., r,  dPi* = l~ (aiO a T + cxo3any ) + s,, i 

Here, la is the inward normal to the boundary OD and A = ~ .  
For an equilibrium state of the mixture (which is not necessarily thermodynamically stable), the right- 

hand side of (1.5) vanishes when there are additional constraints on the variation following from (1.2) 
and (1.4). The differential relation 

~ S -  ~oSU + ~,i5Ni = 0 (1.6) 

where ~ ,  ~. are Lagrange multipliers, must therefore be satisfied. When account is taken of (1.5), (1.2) 
and (1.4), relation (1.6) leads to a system of elliptic differential equations and boundary conditions 

0 0 -LOU, T = 0 ,  ¢YPi -~ 'o(U,i  +mi(P)+~' i  = 0  (1.7) 

CI~0* Ion= ~'oU*,T, ¢~i* 10n= ~'oU,,i (1.8) 

The Lagrange multipliers must be chosen such that conditions (1.2) and (1.4) and satisfied. If the 
distributions T(x a) and ni(x a) a r e  known, then, by (1.7), the Lagrange multipliers can be calculated using 
the formulae 

~'o = f ~o dV / f u.rdV (1.9) 
D D 

~'i = - - f  ((1)i -- ~'o(U,i + micP))dV l V(D) (1.10) 
D 

where V(D) is the volume of the domain D. 
We recall that the thermodynamic relation [9] 

du = Tds + ~dni, u = Ts + ~ i n i - p  (1.11) 

holds, where ×i is the chemical potential of the ith component and p is the hydrostatic pressure. 
For a homogeneous state, when there are no gravitational forces, we obtain 

~% = T--', ~i = Tqxi (1.12) 

from (1.9) and (1.10). 
We will now investigate the compatibility of the model with the well-known zeroth law of thermo- 

dynamics which states that, in the case of a thermodynamically stable equilibrium, the temperature is 
identical at all po.i.nts of the system. We will consider relations (1.7) and (1.8) when t = const. 

Suppose that 13 'j is the inverse of the matrix ~/j, 13iJ%-, = 6~. The (N + 1) equations of (1.7) contain 
N of the quantities An;. On eliminating these quantities, we obtain the single equation 

0 = s, r _ ~.ou,T _~ i  (S,i _Xo(U,i+micp)+ ~,i)+(l_¢;~i j _~CXlj, rlOani3an (1.13) 

where ~i = ~ijai and Lg%- is a Lie derivative [10] of the second rank tensor field ~j in the N-dimensional 
space of the n i along the vector field ~;. Since the gradients Dan/at a point in the medium can be arbitrary, 
(1.13) splits into the two relations 

$,T -- ~'0U,T -- ~i ($,i -- ~'o(U,i at- miCP) + ~'i ) = 0 (1.14) 

~ 0  - 112~0. r = 0 (1 .15 )  

Conditions (1.14) and (1.15) are satisfied identically when account is taken of the first equality of 
(1.12), if 
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ai = O, ag  r = 0 (1.16) 

On the other  hand, if just one of conditions (1.16) is not satisfied, relation (!.14) leads to unnatural 
constraints on the thermodynamic functions u = u(T ,  ni),  s = s (T ,  hi), since the parameter  ~ is 
determined using (1.9) in a non-local manner  and can take any value. Hence,  starting from this instant, 
we shall assume that equalities (1.16) are satisfied. 

A state with a constant temperature can satisfy the first of boundary conditions (1.8) only if the equality 

U. r =  Ts .  r (1.17) 

holds. 
Henceforth,  we shall also assume that this equality is satisfied. 
It turns out that conditions (1.16) and (1.17) are sufficient for the model to be compatible with the 

zeroth law of thermodynamics. 

L e m m a  1. For a specified distribution of the densities n i = ni(xa), the maximum of functional (1.3), 
subject to the additional condition (1.4), is attained at a certain constant temperature.  

Proof. Suppose that, for a specified value of U, T O is the temperature value such that, when T = To, equality 
(1.4) is satisfied. For brevity, we shall label quantities calculated when T = To with an additional zero subscript. 
We now take some arbitrary temperature distribution T = T(x a) which satisfies (1.4). It is obvious that 

S - S  o <~ [ ( S - s o ) d V +  ~(s,-s,o)dA (1.18) 
D aD 

where the equality sign is only attained when T = const. Furthermore, the equality 

0 = j ( u - u o ) d V +  J (u , -  u,0)dA (1.19) 
D OD 

holds. 
Note that, since u.r > 0, u*.r > 0, the dependence of the functions s and s. on the temperature T can be replaced 

by a dependence on the quantities u and u., respectively. 
We will now calculate the second derivatives 

( ~2s~ = - T - 2 u ~  <0, ¢a2s '~  
< 0  

a. J., ' t. J., 
By virtue of this, the equalities 

s - s o = T0 --1 ( u  - u 0 ) + a ( 1 . 2 0 )  

s. - s. 0 = T0 -'l (u, - u. 0 ) + a. (1.21) 

hold, where a ~ 0, a. <~ 0 and the equality sign is only achieved when T = T O at a given point. On substituting 
expressions (1.20) and (1.21) into the right-hand side of (1.18) and using (1.19), we obtain the proof of the iemma. 

Lemma 1 in fact proves that the problem of determining the maximum of the functional (1.3), subject 
to the additional conditions (1.2) and (1.4), is equivalent to the problem of minimizing the functions 
(1.1), subject to the additional conditions (1.2), which was considered earlier [1]. Here,  vii = T ~ j ,  
f = u - Ts, to = u .  - Ts.. Therefore,  as far as stable equilibrium states are concerned, the results of 
the theo.ry which is being developed here are identical with the results following from the isothermal 
model [1]. 

Remark 2. An analysis of the proof of Lemma 1 shows this proof still holds if a = 0. Models, in which the entropy 
functional is altogether independent of the temperature gradient are therefore permissible. 

2. D Y N A M I C  E Q U A T I O N S  

We will now consider the situation when the volume occupied by a mixture in a certain state (not 
necessarily an equilibrium state) is deformed into some other  volume, which only differs infinitesimally 
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from the original. Suppose that T(xa), n~(x a) is the initial state of  the mixture, T'(x*), n~(x a) is the new 
state, and fiT(x "a) = T'(x a) - T(xa), 8ni(x a) = n~(x a) - ni(xa). It is possible to associate a point in the final 
state with the coordinates 

x ~' = x a + u a (2.1) 

where u a = ua(x/') is a small displacement vector, with each point x a of the volume occupied by the mixture 
in the initial state. If the displacements characterize the mean mass motion, then the total mass 

min i (X a ) d v  = mln[(x a)dV" (2.2) 

is conserved in each individual volume. 
We now select an arbitrary domain [2 C D with a piecewise-smooth boundary which is deformed into 

a certain domain g2" by means of  transformation (2.1). We assume that the boundary of  the domain f~ 
does not intersect the boundary OD: 0f2 C D. Using formula (1.3), it is possible to calculate the entropy 
in the initial and final states 

s .  = I odv,  sh, = i O'dV" 

The expression for the functional S~, can be transformed to an integral over the domain t)" if formula 
(2.1) is interpreted as a transformation of the coordinates. In this case, it is necessary to take account 
of equality (2.2) as well as the following relations, which hold, apart from terms in second-order 
infinitesimals 

d r '  =(1 + ~ a u a ) d V ,  ~ =( fa  --3aU ) OX'b (2.3) 

We use the notation 8.T(x a) = T'(x a') - T(x~), 5.ni(x a) = n~(x a') - ni(xa). T h e  representation 

5 , n i ( x  a ) = r i ( xa )+  v i ( x  a) (2.4) 

holds, where ri, vi are quantities of  the same order of infinitesimals as u a, and the equality 

r~(x a) = --~bub(x")ni(x a) (2.5) 

is satisfied. 
In the case of mean mass motion, the displacement field must satisfy the differential equation 

O a (uap) = --mifni  (2.6) 

as a consequence of (2.2) and the first of  relations (2.3). 

Remark 3. Using Eq. (2.6) for the mean mass motion, it is possible to formulate the problem of determining the 
displacement field for specified initial and final particle density distributions of the components. The solution of 
this problem is known to be non-unique, since Eq. (2.6) is invariant under the substitution u a -~ u a + p - l e ~  OdJ o 
where b a is an arbitrary smooth vector field. 

Using Eqs (2.1) and (2.3)-(2.5) and integrating by parts, we find an expression for the change in 
entropy 

~St, 1 = S~y - Sfl = f dV(-~aub]~  ab + ¢~kVk + ~ o S . T )  - (2.7) 
f2 

- ~ k a (o~ a TS,T + aijOani~,nj )dA 
ota 

Z o* = (e~in i - 0 ) 8  ,~ _ e g b I g a T -  txi/OhniOan j 

where/ca is the outward normal to Ot). We will now consider the special case when the displacement 
field ua(x b) vanishes in a sufficiently small neighbourhood of the boundary 01). Expression (2.7) can 
then be rewritten in the form 
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~Sta = ~ dVub (O a Z ab _ nk3b dP k + O t, Tt~o ) + 
fl 

+ ~ dV(~oST + tY~k~n k ) -- ~ k a (ffagaT'6T + ~ij~ani~)nj )dm 
f~ ~q 

(2.8) 

The constraint on the displacements (2.6) was not used in deriving expression (2.7) and, accordingly, 
expression (2.8). The values of ua(x °) at the internal points of the domain fl are therefore arbitrary. 
The identity 

Oa~, ab -- nl~Ob ~P k + ~bTtYPO = 0 (2.9) 

follows from this. 
We select the usual laws of conservation of the number of particles of each components, the momen- 

tum and energy [11, 12] as the system of equations defining the dynamics of the medium 

Otni + Oa la = 0 (2.10) 

D(~t d-i) bOb)l) a = Obpab _ p~ a( p (2.11) 

p ( 3  t + 0  bOb)(p-l u + tp) = pab~av b - ~aqa (2.12) 

Here, I a is the flux of particles of the ith component, ~)a = p:Xm.ja is the mean mass velocity, pab is 
the stress tensor, q~ is the heat flux and bt is the partial derivative with respect to time t. For the closure 
of the hydrodynamic model it is necessary to specify the expressions for the diffusion fluxes Q~/= 
I ~  a -n i~  °, the stress tensor and the heat flux. We shall seek these expressions starting from the condition 
that the entropy production is non-negative for the mixture as a whole. 

In the dynamical problem, we adopt the no-slip and impermeability boundary conditions 

l a va ]oo =0, aQ~ 1~o =0 (2.13) 

and, also, the condition, imposed on the dynamics of the surface energy, 

b,u. = (qe~ - q")l,, (2.14) 

where q~x is the influx of energy to the system. The boundary conditions, which are extended by condi- 
tions (1.8) to the non-equilibrium case, will be formulated later. 

We calculate the time derivative of the total entropy from expression (2.7), which was obtained earlier, 
and Eq. (2.10) by putting u a = ~adt 

dS = ~dV(--~v bZab -¢Pk~,,Q~ + 0 o 0  , +v bOb)T ) + ~la(dPo.~,T +CPi.3tni)dA 
dt o ~o 

(2.15) 

The temperature derivative with respect to time can be eliminated by using Eqs (2.12) and (2.14). 
On carrying out this procedure and taking condition (2.13) into account, we reduce expression (2.15) 
to the form 

-1  a - I  a dS IadV + ~(¢Po.U..rqexl a _ u ,  i t~o,u~l)~tni)dA = +(~PO - (1)o*U*,r)q 1~ + ((Iai, , , 
dt o ~o 

(2.16) 

a~-~a  o b-abwtt'~ 0 "l-r~a"~,L.i Oa ~ i  q'qaOa~O, "Cab .~. pab (yab, (yah = ~Ol~,ab_l.(U_U irli)~ab 

Vo = a'0u3 , v, =a,,- 0uJ.i 

The quantity u? 0 has the dimensions of inverse temperature. The equality T = W0 -1 holds in the case 
1 of a homogeneous state or in the case when o~ = 0. The quantity ~F 0- can therefore be considered as 

one of the definitions for the local temperature (see Remark 1). 
We now use the notation T e = qt0 -l and extend boundary conditions (1.8) to the non-equilibrium 

case 
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(*0 . -  =0. ( . , . -  ° =0 (2.17) 

Use of boundary conditions (2.17) reduces Eq. (2.16) to the usual form which describes the entropy 
production [12] 

a s  j - i  a 
T~ qexl~dA = ~odV (2.18) 

dt ~o o 

In order to make the analogy with the theory without spatial gradients clearer, we note that we 
have the equality h~i = -Tq×i in the case of a homogeneous state or in the case when cx = 0 and o~y = 
0. The quantity ~i = -Tq×i  can therefore be considered as a generalization of the quantity -T-lxi. The 

b b tensors o ~ and x a can naturally be interpreted as the static and viscous stress tensors, respectively. 
b For a homogeneous state or in the case when oc = 0 and ~j = 0, the tensor o a reduces to the expression 

(_#ae). 
We shall construct the transport laws, that is, expressions for the viscous stresses ~b, the diffusion 

fluxes ~ and the heat flux q~ in accordance with the requirement that the right-hand side of (2.18) is 
non-negative. This constraint on the transport laws is quite weak, so that a set of models exists which 
satisfy the condition of non-decreasing entropy production. We will now adopt these transport laws which, 
in the limit when the coefficients o~, o~y vanish, become the classical Newton, Fick and Fourier laws. In 
this case, it should be borne in mind that the expression for the diffusion fluxes must be consistent with 
the identity miQ a = O. 

In order to abbreviate the notation, we will now agree that the subscriptsA, B and C take the values 
0 . . . . .  N and, by definition, we put Q~ = q~, a,0 = 0, a.i = m. In accordance with the preceding remarks, 
we assume that 

"cab +ns(a,p I' +abv°) (2.19) 

Q~ = I-t As3 ,,~P s (2.20) 

Here, lqv, ~s are the positive coefficients of the bulk and shear viscosity respectively and ~tA~ is a 
symmetric matrix which satisfies the additional conditions: (a) a.AlXan = 0; (b) lxa~bAbB > 0 for any 
non-zero vector bA not collinear with the vector a,a. The  requirement that the matrix lXaB should be 
symmetric is associated with the time-reversibility of the processes at the microscopic level (the Onsager 
relations). The coefficients ~v, rls, txAs may depend on T, n i. 

We will now prove that the dynamic theory (2.10)-(2.12), (2.19), (2.20) is consistent with the 
equilibrium theory constructed in Section 1. 

L e m m a  2. The system of equilibrium equations (1.7) is equivalent to the system of hydrodynamic 
equations when there are no fluxes 

366 "h - pb, cp = 0 (2.21) 

Q~ = 0 (2.22) 

Proof. Suppose Eqs (1.7) are satisfied. Then, ~P0 = X0, ~i = ;hmA ° -  ~. Substitution into formula (2.20) immediately 
gives Eqs (2.22). Furthermore, we have, by definition 

~ b ~ab = ~,-ol ~ b y.ab + U,T~ a T -  ni~ aU, i (2.23) 

We now use identity (2.9). Equation (2.23) then becomes 

~ b ffab = ~,'-01 ( ni~ atYP i -- ~ aT¢~ o ) + U,T~ aT - ni~ aU i (2.24) 

Substituting the expressions for ~A from Eqs (1.7) into this equation we obtain (2.21). 
On the other hand, suppose Eqs (2.21) and (2.22) are satisfied. Then, by using formula (2.20), we immediately 

obtain ~F 0 = ~0, ~Fi = )~n3g - ~/, where ~.A are certain constants and ~/is an unknown function of the coordinates. 
Hence, in order to obtain the system of equations (1.7), we only need to prove that the function ~ is identical, 
apart from a constant term, with the gravitational potential tp. We again make use of Eq. (2.22). On substituting 
the expressions 
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¢I~ 0 = ~,0U, T,  tI~ i = ~,0(U,i +mi'ql)--~, i 

into it and using (2.21), we obtain that Oatp = OaV, as was to be proved. 

Since the condition that the entropy production should not be negative defines the model uniquely, 
it is of interest to establish which transport laws are consistent with the equilibrium theory in Section 
1. An analysis of the proof of Lemma 2 shows that the equivalence of Eqs (2.22) and the relations 

~ a ( ~  A -- a,A (a ,B~B)(a ,  ca,  c ) -I ) ----- 0 

is a sufficient condition. 

3. THE HEAT FLUX BETWEEN TWO PARALLEL 
AND I M P E R M E A B L E  WALLS 

We will now consider the problem of the steady state of a multicomponent mixture situated between 
two impermeable walls, one of which is heated to a temperature T1 while the other is heated to a 
temperature T2. We neglect gravitational forces. In this case, all the functions depend on a single 
coordinate, and it is therefore convenient to introduce the notation: x = x 1, D = d/dx. The mixture is 
located in the domain xl ~ x ~< x 2. There are no diffusion fluxes and hence 

Q~t = qS~S Ao (3.1) 

where q is the unknown heat flux. The solution of Eqs (2.20) with right-hand side (3.1) gives 

D~IJA = q~ A + a* A ~ll ( 3 . 2 )  

where ~ = ~.~(T, hi) a r e  certain known functions and ~/= V(x) is an arbitrary function. 
The condition of mechanical equilibrium 

DcY '~ = 0 (3.3) 

holds. 
If we start out solely from the definitions, we obtain 

~ = ~°1( Wini - s - lc tDTDT- l°~ i 'DniDn`  + 2 ~ J 

O~ ~ = ~ o  I ( niD~r~ i + niu, iO~ff 0 - O ~ o  Bxx) 

From these expressions and, also, from Eqs (3.2) and (3.3), it is possible to calculate the function 

~ / =  q p - I  (((~xx _ niu,i )~O _ ni~i ) 

Consequently, it can be assumed that W is an unknown function of the quantitites T, ni, DT, Dni, Wa. 
Next, we immediately derive the equations 

D2T = ct-'(u,r~Po - S,r -lc~,rDT2 -tx,iDTDni ) (3.4) 

1 + t~#,kDnkDnj) D2ni = ~ i l ( - w  I + ~lOU.l + s,i -~ tx jk . lDnjDn~ (3.5) 

from the definitions of the quantities ~t' a. 
The problem of the state of the mixture between the impermeable walls reduces to the system of 

ordinary differential equations (3.2), (3.4), (3.5). By making the trivial substitution ~ = DT, ~ = Dni, 
it is possible to transform this system into a system of 3 (N + 1) first-order ordinary differential equations 
in the 3 (N + 1) unknown functions T, hi, ~ ,  ~FA, which depend on thex coordinate. The general solution 
of this system depends on 3N + 4 free parameters (we recall that the equations contain the parameter 
q). To determine these parameters, there are 2 (N + 1) boundary conditions on the walls (2.17), 
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N conditions (1.2) which fix the numbers of  particles of each of the components, and also two conditions 
which take account of  the temperature of the walls 

(3.6) 

The problem of a mixture between walls has therefore been correctly formulated. In the case of  real 
mixtures, there is no possibility of  obtaining an explicit analytical solution and the above formulation 
can be used either to find a numerical solution or for a qualitative investigation. 

Remark 4. When formulating boundary conditions (3.6) we again encounter the non-uniqueness of the determina- 
tion of the temperature in models with spatial derivatives. At first glance, we should put T[x=x~ = T1, Tlx=x 2 = T2. 
However, only conditions (3.6) ensure the continuity of the entropy flux (Te-lqa). Otherwise, ff one uses a model 
with tx = 0 (see Remark 2), T e is identical with T. 

4. D I S C U S S I O N  OF T H E  R E S U L T S  

It has been shown above that a theory based on a functional of the entropy (1.3) with spatial derivatives 
consistently describes the equilibrium and non-equilibrium states of a mixture using continuous hydro- 
dynamics, since the presence of higher spatial derivatives enables one to describe multiphase states 
without introducing density discontinuities [1]. Actually, the higher spatial derivatives usually become 
essential just at the interface, and, in the remaining situations, the theory with t~ = 0, o~y = 0 works 
quite well in describing the mixture behaviour, The advantage of a continuous approach over an approach 
with discontinuity surfaces is well known in the continuum mechanics: in the first case it is possible to 
solve a single system of  equations for the whole mixture while, in the second case, it is necessary to 
introduce interfaces (the location of which is specified "a priori" to some extent) and the different 
equations are solved for each phase. 

The system of  dynamic equations (2.10)-(2.12) has an evolutionary form and it is therefore possible 
to attempt to apply the general theory of such equations [13] to this system. On the one hand, according 
to the definition of a dynamic model, it has a Lyapunov function, as which we can take the entropy 
with a positive sign. This simplifies the analysis. On the other hand, system (2.10)-(2.12) apparently 
does not fall into the class of equations for which theorems on the existence and uniqueness of the 
solution have been proved, especially as system (2.10)-(2.12) contains a "Navier-Stokes" part with all 
the well-known difficulties, and, in the general case, it is not known whether the solution is unique 
(different equilibrium multiphase states with the same numbers of particles of the components can exist 
at the specified temperature).  
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